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FOREWORD

The 1998 version of the aeroprediction code (AP98) was limited to configurations that had
either planar (two) or cruciform (four) fins. Occasionally, due to launcher constraints or other design
considerations, airframe designers would like to have the option of investigating tradeoffs of
multiple fins (six or eight) for aerodynamic stability. This report documents an approximate
approach to allow these tradeoffs to be accomplished with the AP98 in conjunction with hand
calculations. This approximate approach will be integrated into the aeroprediction code and
transitioned later as a part of the 2002 version of the code.

The work described in this report was supported through the Office of Naval Research
through the Surface Weapons Systems Technology Program managed at the Naval Surface Warfare
- Center, Dahlgren Division (NSWCDD) by Mr. Robin Staton. Tasking from this program was
provided by Mr. Roger Horman and Mr. John Fraysse. Also, some support was provided by the
Marine Corps Weaponry Technology Program managed at NSWCDD by Mr. Bob Stiegler. The
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1.0 INTRODUCTION

Many weapon designs are constrained by their launcher. Launchers such as guns or shoulder-
launched configurations tend to be circular in shape. This circular shape puts a constraint on the
weapon when it is fin-stabilized versus spin-stabilized. These constraints typically mean that to get
adequate stability, a four-fin configuration may need large spans in order to get adequate lifting
surface area on the tail fins. The large span fins can have adverse impact on the rest of the weapon
design in terms of either reducing the rocket motor length or warhead size or both. This is because
the fins are either folded forward and into the projectile or rocket, or folded rearward. In either case,
the fins pop up or out after exit from the launcher to provide the static and dynamic stability required
for successful flight.

One option to reduce the span of a four-fin projectile or missile, and hence to reduce the
impact-on the rocket motor or warhead, is to increase the number of tail fins from four to six or eight.
This design alternative could prove attractive when the fins are folded rearward and pop up after
launch. That is because one could obtain the same level of static stability with a shorter length
round, or the extra length could be used for additional rocket motor or warhead, etc. As a result of
this desire to investigate various multi-tail-fin alternatives for providing static stability on a given
design, an effort was undertaken to define a method that could be used in conjunction with the 1998
version of the aeroprediction code (AP98) to compute aerodynamics of multifin weapons. Of
particular interest here are the aerodynamics of six- and eight-fin configurations, since the AP98’ can
already consider two- and four-fin cases. This new methodology will be integrated into the next
version of the aeroprediction code (APC) and transitioned to users as AP02.

Typical weapon configuration design and control alternatives, for which aerodynamics are
desired, are shown in Figure 1. These configurations define the general requirements to be
considered in the analytical development methodology for multifin configurations. In general, one
can have a body-tail configuration that is either guided or unguided. If it is unguided, four, six, or
eight tail fins can be assumed. On the other hand, if it is tail-controlled, the author is not aware of
any tail control alternatives other than for cruciform (four) fins. Hence, this will be the requirement
for tail-controlled weapons.

Canard or wing-body-tail configurations have more options for control than body-tail. The
control can be from the canards or wings, in which case there will be two or four canards (wings)
present and either four, six, or eight tail surfaces. Here, the tail surfaces are used exclusively for
stability. For the tail control option, the forward set of lifting surfaces can have two, four, six, or
eight fins, but again, the tail controls are assumed to be cruciform. In effect, the above alternative
design and control constraints are placed on the aerodynamics methodology from a practical
standpoint.
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WEAPON DESIGN
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FIGURE 1. TYPICAL WEAPON DESIGN AND CONTROL ALTERNATIVES
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The above set of requirements had to do with the practical configurations that aerodynamics
are desired for. A second set of requirements in the analytical methodology development has to do
with the methodology development approach in the APC. This latter set of requirements is driven
by the APC logic and how to most cost-effectively integrate multifin computations into a code set
up for two- or four-fin alternatives. The APC logic requirement thus leads one to define factors by
which the two- or four-fin aerodynamics can be multiplied so as to make the minimum amount of
changes to the APC.

The goal of the present report is therefore to develop factors by which the aerodynamics of
two- and four-fin configurations can be multiplied so as to give acceptable accuracy for
aerodynamics of the six- and eight-fin cases shown in Figure 1.

2.0 SUMMARY OF METHODS FOR PLANAR AND CRUCIFORM
CONFIGURATIONS

Reference 1 summarizes the theoretical methodology of the AP98 and the interested reader
is referred to that reference for the details of the methodology. However, it is believed that a brief
summary or overview of the methodology is appropriate in order to lead into the modifications
necessary to consider six- and eight-fin configurations as shown in Figure 1.

Basically, the aeroprediction code uses a component buildup approach to calculate the
aerodynamics. By component buildup is meant that the code breaks the configuration down into
body alone, wing or tail alone, and mutual interference aerodynamics. Various theoretical or
empirical methods are then used to calculate the aerodynamics of these configuration components
in a given Mach number regime, and then they are added together to obtain the total configuration
aerodynamics. This is as opposed to a Computational Fluid Dynamics (CFD) code where all the
aerodynamics are computed simultaneously for all configuration components, including the mutual
interference between components.

The APC is considered a semiempirical code. It is semiempirical because it combines
theoretical methods and empirical methods to form an overall prediction tool. At low angles of
attack (AOAs), mostly analytical methods based on slender body theory (SBT), linear theory (LT),
or second-order perturbation methods are used to calculate the aerodynamics. To include the
nonlinear aerodynamics that occur at moderate to high AOA, several large wind tunnel data bases
are utilized. Figures 2-4 show the theoretical methods that are used to calculate a given force or
moment at a given Mach number region. Also shown on the figure are the references associated with
each method for those interested in more details.

The APC has shown that it can calculate aerodynamics of most tactical weapon
configurations with average accuracies of +10 percent for C, and Cy, and +4 percent of body length
for Xcp. By “average” is meant enough AOAs and Mach numbers are considered to get a good
statistical sample. Dynamic derivatives are less accurate and an average accuracy of +20 percent is
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probably more appropriate for low AOAs. No nonlinear methods have been incorporated for higher

AOA dynamic derivatives.
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FIGURE 3. AP98 METHODS FOR DYNAMIC DERIVATIVES (REFERENCES 16 AND 17)
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FIGURE 4. AP98 METHODS FOR WING-ALONE AND INTERFERENCE AERODYNAMICS

3.0 MODIFICATIONS FOR SIX- AND EIGHT-FIN CONFIGURATIONS

Section 2.0 of this report summarized the methods used for aerodynamic computations of
planar (two-fin) and cruciform (four-fin) weapon configurations. This section will define
approximations necessary to allow the methods of Section 2.0 to be used for six- and eight-fin
configuration aerodynamics. As discussed in the Introduction, one of the requirements for this
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methodology is to try to define multiplication factors for six- and eight-fin aerodynamics compared
to two- or four-fin cases. This will then allow the methods of Section 2.0 to be used directly with
minimum modifications. :

The first approach will be to investigate SBT implications for multifin aecrodynamics. Then
CFD and experimental data will be utilized for higher AOA effects on multifin aerodynamics.

3.1 SLENDER BODY THEORY PREDICTIONS FOR MULTIFIN AERODYNAMICS

Slender body theory will consider the wings and the mutual interference effects separately.
The body-alone aerodynamics are unaffected by the number of fins present, and therefore the
methods of Figures 2-4 will stay the same as those in the AP98. References 24 and 25 are the
primary sources of material utilized for this part of the report. As pointed out in References 24 and
25, SBT assumes very slender configurations flying at small AOA. As a result of this assumption,
aerodynamics are Mach-number independent. However, it is believed SBT can give a reasonable
estimate of the ratio of aerodynamics of six and eight fins to four fins, even though the absolute
values may be in error.

3.1.1 Wing Alone

Figures 5-8 present the SBT results for one to four wings (two to eight fins) at both the ® =0
and nonzero roll orientations. Results are presented for normal force, axial force, center of pressure,
side force and roll damping moment of a wing alone. Figure 5 is for a planar wing (two fins) and
shows that a side force exists in any roll orientation but zero. On the other hand, if the missile is
cruciform or has more than two wings present (Figures 6-8), the side force is zero near zero AOA.
As already mentioned, the Figure 5-8 results are for small AOA. Nonlinear AOA effects will be
discussed later.

Figure 6 gives the results for cruciform or four-fin configurations. Note that SBT gives
normal force equal to that of a planar configuration at any roll orientation. However, for a cruciform
missile, axial force of the wings is double that of the single-wing case and roll damping is 1.62 times
that of the single-fin case. While pitch damping moments are not shown on Figures 5-8, they
correlate directly with the normal force of the wing alone, and as a result, it will be assumed the pitch
damping moment factors for multiple-wing aerodynamics are the same as those for the normal force
coefficient.

If the missile has three or four wings (six or eight fins respectively) as shown in Figures 7
and 8, the normal force factors over the single wing case are 1.5 and 2.0 respectively. The axial
force factors for the wings are directly proportional to the number of wings (three and four
respectively). The roll damping factors for the three- and four-wing cases are 2 and 2.3 respectively,
compared to the single-fin case. Figures 6-8 give the aerodynamics relative to a planar fin case
because that is the way they are computed in the APC, and hence, to go to a multifin case, factors
applied to the planar wing configuration are necessary.
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3.1.2 Wing-Body

Wing-body aerodynamics are significantly different from body-alone or wing-alone. This
difference is because the body induces an additional upwash onto the fin and the fin induces a higher
pressure onto the body. The result of these effects is, in general, a higher loading on both the fin and

body than if each were investigated separately. This higher loading dissipates as AOA increases.®

Since the latest version of the APC' has all these nonlinearities included, the assumption is that the
factors used for the multifin options on normal force will be used for the interference effects as well.

That is,

[Cqua)’ CNB(W)’ CNT(V)]G,S Fin = (FeFy) [CNwaz)’ CNB(W)’ CNT(V)L Fin (1

The factors Fg and F; are 1.5 and 2.0, respectively, for the six- and eight-fin cases using SBT at low
AOA. These factors will be modified later for all AOA using CFD codes, in conjunction with
experimental data.

The axial force methodology for the wing-body will remain as currently available in the
API8, except for the changes already discussed for the multifin factors of Figures 6-8.

For roll damping moments, the present methodology in the AP98 assumes the fins go to the
centerline of the body and body interference effects are accounted for by Figure 9. Figure 9 is taken
from Reference 24 and it basically says that for two- or four-fin cases, the wing-body roll damping
is nearly independent of /s for values up to 0.4. After that, the roll damping goes to the body-alone
value in a nearly linear fashion as 1/s approaches 1.0. The only assumption made here is that for six
or eight fins, the curve of Figure 9 for four fins can be used directly. This assumption is based on
the fact that SBT shows little difference between two- and four-fin wing-body roll damping as a
function of 1/s, as seen in Figure 9.

As far as pitch damping moment is concerned, the computational procedure is similar to that
of the roll damping. The wings are assumed to extend to the centerline of the body and then the
method of Bryson® is used to account for the interference effects of the body in the presence of the
wing. Since the wings are assumed to extend to the centerline of the body and the number of wings
will be accounted for by the factor of the normal force of the wing alone, this wing-body interference
factor will be less than one. Figure 10 gives the slender body theory results for two, four, six and
eight wings. As seen in Figure 10, increasing the number of fins from two to eight has very little
effect for small values of 1/s (r/s < 0.4), but wing-body interference has an increasing effect for all
fins as r/s approaches 0.6 to 0.8.

11
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32 COMPUTATIONAL FLUID DYNAMICS (CFD) PREDICTIONS FOR MULTIFIN
AERODYNAMICS

The SBT of Section 3.1 was limited to low AOA for slender wing-body configurations. The
results do not account for wing-to-wing shock interactions, wing-to-wing blockage effects that occur
at high AOA and Mach number, or wing geometry effects. In order to address these issues, and
either confirm SBT (which says the multi-wing aerodynamics are independent of these effects) or
to develop an estimate of multifin aerodynamics as a function of the above-mentioned SBT
assumptions, CFD will be used.

Before discussing the actual CFD codes used to perform the multifin aerodynamic
calculations, it is believed appropriate to discuss some of the nonlinear physical phenomena involved
that SBT does not account for. The first is wing blockage effects. To visualize wing blockage
effects, several sketches of the configurations the flow would see, as AOA is increased from 0 to
90 deg, are shown in Figure 11 for four-, six-, and eight-fin configurations.

Figure 11A is for no sweepback of fins that have a large span and small chord. Notice that
at AOA 0 deg, no blockage effects occur between fins, only fin-to-fin interference from shock waves.
Note that at AOA 90 deg, there appears to be little or no difference between the four-, six-, and eight-
fin cases. Thus, to assume that the SBT factors on normal force for the six-fin (1.5) and eight-fin
(2.0) cases go to the four-fin value (1.0) at & = 90 deg appears reasonable. Also notice that for AGA
45 deg, there still does not appear to be blockage of the air flow for either the six- or eight-fin cases
from the adjacent fins, but the body does adversely impact the leeward plane fins. The implication
of these comments is that for short chord configurations, blockage occurs at fairly high AOA for the
windward plane fins and at moderate AOA for the leeward plane fins.

Figure 11B illustrates a second case where the chord is longer and the leading edge is swept
back. Note that for this case, the same statements hold true for the & = 0 and 90 deg cases as for the
short chord configuration. However, note that for the 45 deg AOA, blockage of the flow from one
fin to another has started to occur. In other words, as the chord increases, blockage occurs at lower
AOA:s.

It should be noted that the SBT factors at low AOA assume the fins in both the leeward and
windward planes as being effective in providing lift. At both the 45 deg and 90 deg AOA, it is clear
from Figure 11A and 11B that even if the windward plane fins remain completely or partially
effective, the leeward plane fins are mostly blocked by the body or fins. Hence, part of the additional
lift factor will be reduced because of the fact that in the leeward plane, a good portion of the fin is
shielded or blocked by the body or windward plane fins.

As a result of the differences in flow patterns on the leeward and windward plane fins, the
slender body enhancement in normal force of the six-fin and eight-fin cases could be split equally
and treated separately between the leeward and windward planes. At low AOA, say 10 deg or less,
it seems reasonable to assume that both the leeward and windward plane fins are fully effective.
Above about 10 deg AOA, the leeward plane fins degrade quite rapidly.
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A possible way in which the normal force factors for six and eight fins degrade with AOA,
as compared to that for two or four fins, is illustrated in Figure 12. Figure 12 breaks down the
nonlinear degradation of the normal force factor with AOA into, first, the leeward and windward
plane fins, and then the total or sum of the two. This figure is simply a qualitative representation of
what is envisioned to occur as AOA increases. CFD computations will be used to verify or modify
this qualitative view of multifin aerodynamics as a function of AOA.

Another physical phenomenon inherent in multifin aerodynamic computations is wing-to-
wing shock interactions. Obviously, this phenomenon is also not accounted for by SBT, since the
slender body theory allows for an isentropic flow assumption, which in turn means no shock waves
are present. In reality, these shock interactions between wings in Figure 11 are functions of wing
geometry, Mach number, and AOA. CFD codes can easily account for this physical phenomenon.

3.2.1 Computational Fluid Dynamics Computations

Two CFD codes will be used in the computational process. They are the ZEUS?” and GASP®
codes. The ZEUS code is a full Euler solver whereas the GASP code is a full Navier-Stokes solver
with a subsonic Euler solver option. The ZEUS code uses a marching solution to the Euler
equations. This means the flow along the axial plane must be supersonic in order for the code to
have hyperbolic flow conditions throughout the computational region. This region encompasses the
bow shock to the rear of the body. To ensure supersonic flow, the general operational boundary of
the ZEUS code is shown in Figure 13. This boundary will vary somewhat depending on the
particular configuration of interest but is an approximate boundary.

The ZEUS code has been recently downloaded to a personal computer with a pre- and post-
processing interface developed.”” This interface (referred to as ZEUS*) uses much of the logic as
used in the AP98 personal computer interface® in terms of several options for available body
geometries. This greatly simplifies the geometry inputs for many cases and thus decreases the set-up
time significantly for the ZEUS code. Also, with the higher-speed personal computers now
available, computational time for a sharp-nose, wing-body case are quite reasonable for many design
computations.

The configuration chosen for the computation of the factors F; and F; of Equation (1) is the
NASA Tri-service model.*> The NASA Tri-service model was the basic configuration used since
wind tunnel data was available for the four-fin case at a wide range of aspect ratio, Mach number,
and AOA. Aspect ratios of 0.25, 0.5, 1.0, 2.0, and 4.0 were considered at Mach numbers of 1.5, 2.0,
3.0, and 4.5. For the six- and eight-fin computations, the same geometric configuration was used
for each individual fin as in the four-fin case. The hinge line location on the body was held constant
for all aspect ratios. The normal force for the body alone was determined first at each Mach number
and AOA. This result was subtracted from the normal force values computed for the four-, six-, and
eight-fin cases at the corresponding freestream conditions. It was assumed that this remainder was
the fin normal-force contribution, including all interference effects. The ratio of the six-fin and
eight-fin values to those for four fins gave the multiplying factor indicating the effectiveness of the
extra fins.
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FIGURE 13. GENERAL OPERATIONAL BOUNDARY OF ZEUS CODE

The NASA Tri-service data base considered taper ratio as a configuration variable in addition
to aspect ratio. However, after performing several computations for the factors Fy and F; as a
function of taper ratio, it was decided to drop this variable as secondary in importance compared to
aspect ratio, Mach number, and AOA. Variations in the factors Fg and F; as a function of taper ratio
were less than 5 percent for the cases considered. Hence, a value of 0.5 was used for taper ratio in
all the ZEUS™ and GASP Euler calculations for the factors F; and F;. Computational times per data
point for the ZEUS*" varied from 3 to 15 minutes using a 200 megahertz Intel Pentium II computer
chip. The higher the AOA, the larger the computational time. Computational times were not
obtained for the GASP Euler solutions as they were run on a workstation in conjunction with other
codes being run simultaneously. Times on the order of hours versus minutes were typical, however.

Note from Figure 13 that the ZEUS? Euler solver is limited by subsonic flow occurring
anywhere in the flowfield. This is because the ZEUS code is a solution of the hyperbolic equations
of motion, which means the axial flow (Ma) must be supersonic throughout. To compute the normal
force factors for the multifin cases where subsonic Mach numbers existed, the subsonic Euler
solution option of the GASP? code was utilized. For these cases, the ZEUS*" tool was used to
generate three-dimensional grids that were then imported into the GASP flowfield software. The
computational domains were (51x36x165), (51x36x165), (51x54x165), (51x36x165) for aspect
ratios of 0.25, 0.5, 1.0, and 2.0, respectively. The first number indicates the number of grid points
in the radial direction; the second and third, the number of points in the circumferential and axial
directions, respectively. Note that all the cases are symmetric about the pitch plane, and therefore,
only 180 deg of the circumferential plane was considered. Figure 14 shows the computational grid
used for the axial and radial directions for the GASP computations. Results of the normal force
computations of both the ZEUS** and GASP computations of the factors F¢ and F; are given in
Table 1. A box is placed around the GASP computations so they can be distinguished from those

18
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TABLE 1. EULER CFD CALCULATIONS FROM ZEUS*? AND|GASP*|CODES

AR =025
SIX FINS (Fy)

o M=06 M=15 M =20 M=3.0 M=45
1 1.365 1.274 1.232 1.232
2 1.295 1.260 1.221 1.234
3 1.288 1.248 1.216 1.235
4 1.278 1.238 1.206 1.244
5 1.223 1.199 1.255
6 1.209 1.194 1.268
7 1.196 1.188 1.281
8 1.186 1.186 1.289
9 1.171 1.182 1.296

10 1.160 1.178 1.302

15 1.104 1.174 1.360

20 1.204 1.379

25 1.203 1318

30 1.201 1.222

45

EIGHT FINS (Fy)

a M=0.6 M=15 M =20 M=3.0 M=4.5
1 1.407 1.384 1.302 1.305
2 1.372 1.368 1.303 1310
3 1.381 1.361 1.296 1315
4 1.379 1.345 1.287 1.323
5 1.327 1.277 1336
6 1.306 1.265 1.350
7 1.292 1.257 1.366
8 1.273 1.249 1.379
9 1.259 1.239 1391

10 1.238 1.234 1.407

15 1.235 1.469

20 1.261 1.477

25 1.259 1.408

30 1.255 1.307

45 |
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TABLE 1. EULER CFD CALCULATIONS FROM ZEUS*? AND|GASP?|CODES (Continued)

AR=05
| SIX FINS (Fy)
| I M=0.6 M=15 M=20 M=3.0 M=45
1 1.235 1.201 1321 1.485
2 1.232 1.191 1.322 1.487
3 1.215 1.188 1315 1.486
4 1211 1.179 1314 1.484
5 1.180 1.312 1.494
6 1.176 1.308 1.507
7 1.175 1.308 1.522
8 1.174 1.304 1.491
9 1.174 1.300 1.480

10 1.169 1.293 1.479

11 1171

12 1171

15 1.270 1.527

20 1.292 1.533

25 1.294 1.483

30 1.070 1.291 1.354

45 0952 1.002

60 0.709

EIGHT FINS (Fy)

o M=06 M=15 M=20 M=3.0 M=45
1 1.336 1.273 1.369 1.728
2 1351 1.274 1.364 1.715
3 1.350 1.269 1.357 1.717
4 1.341 1.262 1.361 1.719
5 1.256 1.368 1.760
6 1.255 1.369 1.773
7 1.252 1.372 1.796
8 1.248 1.371 1.785
9 1.251 1.370 1.793

10 1.252 1.371 1.818

11 1.256

12 1.258

15 1.396 1.844

20 1.430 1.816

25 1.422 1.741

‘ 30 1.160 1.418 1.608

45 1.038 1.050

60 0.943
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TABLE 1. EULER CFD CALCULATIONS FROM ZEUS** AND CODES (Continued)

AR=10
SIX FINS (F,)

o M=06 M=15 M=2.0 M=3.0 M=4.5
1 1.222 1.446 1.505 1.486
2 1.203 1.439 1.475 1.493
3 1.428 1.474 1.480
4 1.409 1.480 1.495
5 1.400 1.490 1.510
6 1.392 1.467 1.519
7 1.379 1.434 1.521
8 1.365 1.442 1.512
9 1.362 1432 1.483

10 1.427 1478

15 1.350 1.513

20 1.369 1.539

25 1.378 1.513

30 1.064 1.407

45

60

EIGHT FINS (Fy)

@ M=06 M=15 M=20 M=30 M=45
1 1.288 1.582 1.952 1.900
2 1.280 1.578 1915 1.961
3 1.279 1.571 1.916 1.936
4 1.565 1.906 1.941
5 1.546 1.910 1.993
6 1.538 1.888 2.006
7 1.523 1.860 2.010
8 1.517 1.851 2.013
9 1.514 1.862 2.008

10 1.861 1.980

15 1.742 2.001

20 1.747 2.048

25 1.722 2.049

30 1.441 2,012

45

60
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TABLE 1. EULER CFD CALCULATIONS FROM ZEUS** AND|GASP?*|CODES (Continued)

AR=20
SIX FINS (Fy)

o M=06 M=15 M=20 M=3.0 M=45
1 1.512 1.524 1.519 1.524
2 1.503 1.495 1.481 1.495
3 1.522 1.468 1477 1.486
4 1.470 1.497 1.487
5 1.457 1.482 1.498
6 1473 1.439 1.506
7 1.464 1.419 1.500
8 1.444 1.422 1512
9 1.447 1.397 1.480

10 1.432 1.416 1.478

11 1418

15 1.204 1.364 1.516

20 1.401 1.530

25 1.437 1.505

30 1.300 0.859 1.055 1.448

45 -0.533 0.776 0.966 1.118

60 0.883

EIGHT FINS (F;)

o M=06 M=15 M=20 M=30 M=45
1 1.730 1.940 1.913 1.910
2 1.756 1.954 1.901 1.926
3 1.775 1912 1.930 1.901
4 1.728 1.928 1.948 1.889
5 1.927 1.911 1.948
6 1.915 1.868 1.977
7 1.893 1.870 1.953
8 1.874 1.856 1.956
9 1.860 1.858 1.957

10 1.859 1.839 1.950

11 1.846

12 1.899°

15 1.761 2.021

20 1.830 2.043

25 1.842

30 2952 1.507 1.521 2.094

45 0.885 1.430 1.909 1.503

60 1.829
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of the ZEUS computations. As with the ZEUS™ computations, the GASP computations were
compared to the NASA Tri-service data base for the body alone and four-fin computations before
proceeding to the six- and eight-fin computations. The results of these comparisons can be found
in Table 2. Normal force coefficients are shown from the CFD computations and from the wind
tunnel data base at each point where information was available for both. The percent difference
between the two is also given. In the case of the CFD data, a box is placed around the GASP results
as before. Results of the comparisons were within experimental errors in most cases, so it is
believed the six- and eight-fin results of Table 1 should prove adequate for the development of a
semiempirical model for multifin aerodynamics.

An exception to the computations being within experimental error occurred for the Mach 0.6
cases where the full Euler solution of the GASP code was used. Here, the GASP body-alone
solution gave normal force coefficients that were higher than data for moderate angles of attack
(a =15 to 30 deg). In analyzing this with the AP98, it was concluded that the crossflow Reynolds
number was supercritical, which meant that instead of a crossflow drag coefficient of 1.2, a value
less than that was needed to match experiment. Physically, what is happening when the crossflow
drag coefficient decreases rapidly is that the flow around the body remains more attached in the
leeward plane as opposed to separating near the maximum diameter of the body in the crossflow
plane. The inviscid Euler solution cannot model this without some help. The full Navier-Stokes
solution from GASP, given the correct turbulence model, should be able to model this phenomena.
However, at present, time does not permit this approach. As a result, engineering judgement will
be used for the Euler solutions at low Mach numbers where the crossflow separation model is not
accurate. This problem did not appear to occur with the ZEUS™, or with the GASP at higher Mach
number, where the leeward plane pressures are fairly small in comparison to the windward plane
pressures.

Another problem in the GASP Euler solutions occurred for the larger aspect ratio fin cases. .
Here the fins are very small and any errors in the body alone solution can produce fairly large errors
in the factors F, and F;. As a result, engineering judgement must be used here as well.

Results from Table 1 were then plotted in Figure 15 for aspect ratio 0.25, 0.5, 1.0, 2.0 and
Mach number 0.6, 1.5, 2.0, 3.0, and 4.5 as functions of AOA. Then curves were drawn through the
data for use in the aeroprediction code. Data from these curves is given in Table 3. This then is the
model that will be incorporated into the AP98 for multifin aerodynamics. Any Navier-Stokes
calculations in the future or comparisons to wind tunnel data for configurations outside the data base
can be used to fine-tune this model.
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TABLE 2. COMPARISON OF CFD RESULTS TO NASA DATA BASE FOR

FOUR-FIN CONFIGURATION
BODY ALONE
M o C\(WIND TUNNEL) Cy(CFD) % DIFFERENCE
0.6 15 1.00 2.267 126.7
30 3.09 4.658 50.7
1.5 15 1.39 1.629 17.2
30 6.11 7.120 16.5
2.0 5 0.32 0.372 16.2
10 0.82 0.835 1.8
15 1.86 1.923 34
30 6.47 7.222 11.6
4.5 5 043 0.381 -114
10 1.21 1.129 -6.7
15 2.21 1.997 -9.6
20 3.28 3.039 -73
25 4.62 4.251 -8.0
30 6.00 5.565 -7.2
AR =0.25
M [ Cy (WIND TUNNEL) C\(CFD) % DIFFERENCE
0.6 15 5.12 6.5
1.5 15 4.96 5.130 34
2.0 10 2.82 2.809 0.3
3.0 5 1.02 1.064 4.3
10 2.46 2442 -0.7
15 4.13 4.111 -0.5
20 6.00 5.929 -1.2
25 8.14 7.984 -19
4.5 5 0.92 0.905 -1.6
10 2.00 1.981 -1.0
15 3.24 3.266 0.8
20 4.96 4.876 -1.7
25 6.92 6.782 -2.0
30 9.05 8.889 -1.8
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TABLE 2. COMPARISON OF CFD RESULTS TO NASA DATA BASE FOR

FOUR-FIN CONFIGURATION (Continued)

AR=05

M o C, (WIND TUNNEL) e 9% DIFFERENCE
0.6 15 3.62 4.129 14.1
15 3.67 3702 0.9
15 30 9.57 10.808 12.9
2.0 5 0.86 1.041 21.0
10 2.00 2.184 9.2
30 9.62 10.058 46
3.0 5 0.81 0.866 6.9
10 1.95 1.959 0.5
15 335 3.349 0.0
20 481 4.882 15
25 6.54 6.617 12
45 5 0.65 0.712 95
10 1.62 1.611 -06
15 2.70 2.672 -1.0
20 405 4017 08
25 5.68 5.597 15
30 751 7.347 -22
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TABLE 2. COMPARISON OF CFD RESULTS TO NASA DATA BASE FOR
FOUR-FIN CONFIGURATION (Continued)

AR=1.0
M o C (WIND TUNNEL) Cy(CFD) % DIFFERENCE
0.6 15 2.54 3.252 29.0
30 6.00 6.761 12.7
15 15 297 2.869 | -34
30 8.38 9.016 7.6
2.0 5 0.65 0.814 25.2
15 292 3.040 4.1
30 7.94 8.734 10.0
3.0 5 0.59 0.660 11.9
10 1.51 1.569 1.8
15 2.70 2.854 5.7
20 4.05 4.262 5.2
25 5.57 5.815 4.4
30 7.29 7.588 4.1
4.5 5 0.59 0.574 2.7
10 1.46 1.404 -3.8
15 248 2.401 -3.2
20 3.73 3.607 -33
25 5.21 5.014 -3.8
30 6.81 6.530 -4.1
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TABLE 2. COMPARISON OF CFD RESULTS TO NASA DATA BASE FOR

FOUR-FIN CONFIGURATION (Continued)

AR=20

M [+ C\(WIND TUNNEL) C\(CFD) % DIFFERENCE
0.6 15 1.67 2.762 65.4
30 6.32 5.281 -16.4
L5 15 2.43 2.317 -4.6
30 7.35 8.169 11.1
2.0 5 0.48 0.634 32.1
10 1.18 1.362 154
15 2.43 2.566 5.6
30 7.35 8.048 9.5
3.0 5 0.48 0.518 7.9
10 1.35 1.334 -1.2
15 2.43 2.582 6.2
20 3.73 3.925 52
25 5.19 5.394 3.9
5 0.54 0.482 -10.7
45 10 1.35 1.272 -5.8
15 2.38 2.213 -7.0
20 3.51 3.348 -4.6
25 497 4.668 -6.1
30 6.43 6.094 -5.2
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TABLE 3. APPROXIMATED VALUES OF THE FACTORS F, AND F; OBTAINED FROM SMOOTHED
VALUES OF THE ZEUS*™ AND GASP CODE COMPUTATIONS AND ENGINEERING JUDGEMENT

AR o F F,
MACH NUMBER MACH NUMBER
0.6 1.5 20 3.0 4.5 0.6 1.5 20 3.0 4.5
25 0 1.26 1.37 1.27 1.19 1.22 1.90 1.42 14 1.27 1.30
15 1.00 1.00 1.10 1.19 1.35 1.45 1.03 1.17 1.27 1.46
30 1.00 1.00 1.00 1.19 1.22 1.00 1.00 1.01 1.27 1.32
45 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
60 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 | 1.00 1.00 1.00
.50 0 1.35 1.25 1.20 1.30 1.47 2.00 1.36 1.28 1.35 1.72
15 1.06 1.10 1.15 1.29 1.50 1.50 1.18 1.24 1.40 1.83
30 1.00 1.00 1.07 1.28 1.36 1.00 1.08 1.16 1.41 1.60
45 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.04 1.06 1.20
60 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.0 0 1.40 1.22 1.35 1.42 1.50 1.92 1.27 1.58 1.96 2.00
15 1.15 1.13 1.23 1.32 1.50 1.69 1.38 1.38 1.80 2.00
30 1.07 1.00 1.00 121 1.38 143 1.28 1.15 1.64 2.00
45 1.02 1.00 1.00 |.1.10 1.13 1.20 1.05 1.00 1.48 1.61
60 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.32 1.25
75 1.00 1.00 | 1.00 1.00 1.00 1.00 1.00 1.00 1.16 1.00
90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2.0 0 1.42 1.50 1.50 1.50 1.50 1.92 1.77 1.97 1.92 1.90
15 1.31 1.41 1.27 1.39 1.50 1.70 1.95 1.75 1.77 2.00
30 1.17 1.00 1.03 1.27 1.45 1.47 1.65 1.57 1.62 2.10
45 1.03 1.00 1.00 1.14 1.23 1.25 1.32 1.27 1.47 1.95
60 1.00 1.00 1.00 1.00 1.00 1.02 1.00 1.02 1.32 1.62
75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.17 1.32
90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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4.0 AERODYNAMIC SMOOTHER

The aeroprediction code uses many different methods to predict aerodynamics at a given
Mach number and angle of attack. These methods are illustrated in Figures 2 through 4. At Mach
numbers 1.2, 2.0, and 6.0, where one method ends and another method takes over, discontinuities
in aerodynamics can be obtained. The discontinuities are the result of different methods being used
on either side of M, = 1.2, 2.0, or 6.0. The problem does not appear to be significant at M = 1.2, but
at 2.0 and 6.0, these fictitious discontinuities can be misleading to an unsuspecting user of the APC
when they plot out the aerodynamics as a function of Mach number. As an illustration of this
problem, consider Figure 16. Figure 16 is an example of a 12-caliber, axisymmetric body, tangent
ogive-cylinder configuration with a nose length of 3 calibers. It has aspect ratio 2.0 cruciform delta
fins oriented in the ® = 0 deg roll orientation with the leading edge located 7.8 calibers from the nose
tip. The moments are taken about the center of gravity.

The static aerodynamics shown in Figure 16 are axial force, normal force, and pitching
moment coefficients along with the center of pressure. Mach numbers for which the AP98 was
executed were 0.6, 0.9, 1.2, 1.5, 1.99, 2.01, 2.4, 2.95, 3.95, 5.99, 6.0, and 10. The point where
second-order Van Dyke (SOVD) ends and second-order shock expansion (SOSE) takes over was
selected to be 2.0. The point where conventional second-order shock expansion ends and a modified
form of shock expansion theory (MSOSE) takes over is automatically set at 6.0 in the AP98. Hence,
M = 1.99 data is from SOVD, M = 2.01 and 5.99 data are from SOSE, and M = 6.0 data is from
MSOSE. Notice on the C, plot that there is a discontinuity between SOVD and SOSE at M = 2.0.
Also notice on the Cy plot there is a discontinuity at both M = 2.0 and 6.0. For pitching moment and
center of pressure, discontinuities occur only at M = 6.0. The discontinuities in Figure 16 appear
small, but some cases considered in the past have shown discontinuities larger than these.

While the numbers in this particular example, due to the different aerodynamic methods, are
less then 5 percent of the totals, the user of the APC is left with the question of which number to use.
Experience has shown in comparison to data that an average of the two numbers is probably better
than using either of the estimates alone. As a result, an aecrodynamic smoother is developed that is
based on an average of the values given by SOSE and SOVD at M = 2.0 and an average of SOSE
and MSOSE at M = 6.0. The smoother linearly goes to the SOVD value at M = 1.5 and to the SOSE
value of the particular coefficient at M = 2.5. Likewise, the value of the aerodynamic coefficient at
M =5.0is based fully on SOSE and at M = 7.0 it is based on MSOSE. The average value of the two
methods is used at M = 6.0.

The mathematics of the aerodynamic smoother at M = 2.0 and M = 6.0 are defined by
Equations (2) and (3).

Smoother at M =2.0

(Ci)M=1.5 B (Ci)sovn ; (Ci)M=2.5 - (Ci)SOSE (24)
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FIGURE 16. STATIC AERODYNAMICS OF A BODY-TAIL CONFIGURATION
ILLUSTRATING DISCONTINUITIES AROUND M = 2.0 AND 6.0 (¢ = 1 DEG, ® = 0 DEG)
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1.5<M<20

(ci)M = (ci)SOVD +2M - 1.5) (Aci)M=2.0 (2B)
20<M<25

(ci)M = (ci)SOSE +2(M - 2.5) (ACi)M=z.o o0
where (Aci)M=2.o B «Ci)SOSE - (Ci)SOVD) /2
Smoother at M = 6.0

(Ci)M=5.o B (Ci)SOSE g (Ci)M 10 (Ci)MSOSE (34)
5.0 < M<6.0

(ci)M = (ci)SOSE + (M - 5.0 (ACMW (3B)
6.0<M<7.0

(Ci)M B (Ci)MSOSE M- 7.0) (Aci)M=6.o (30)

where (Aci)M 60 ((Ci)MSOSE : (ci)soss)/ 2

The term C; of Equations (2) and (3) represents any of the static aerodynamic coefficients. Figure 17
is a qualitative view of what Equations (2) and (3) are doing in terms of modifying the values of the
API8 so as to eliminate the discontinuities shown in Figure 16.

Figure 18 shows the new values of normal force coefficient and center of pressure for the
configuration of Figure 16 using the aerodynamic smoother. Note that the discontinuities of
Figure 16 are no longer present in Figure 18 as a result of the aerodynamic smoother. The smoother
only eliminates the discontinuity in value of the aecrodynamic coefficient. It does not require that the
slope of the aerodynamic coefficients ( i.e., d C/d M) be continuous in a mathematical sense.
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FIGURE 17. USE OF AERODYNAMIC SMOOTHER TO ELIMINATE DISCONTINUITY IN
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5.0 COMPARISON OF NEW METHOD FOR MULTIFIN AERODYNAMICS
TO EXPERIMENT

The very limited availability of experimental data for normal force on missiles with more
than four fins makes validation of the new methodology difficult. One set of ballistic range data for
a six-finned projectile, along with accompanying CFD information, may be found in References 32
and 33. The geometric configuration of the model used in these tests is shown in Figure 19. It
consists of a cone-cylinder body 23.14 calibers in total length with a diameter of 27.05 mm. The
cone half angle is 8 deg and the leading and trailing edges of the fins are blunt. For the AP98 runs,
Reynolds number was computed based on sea level conditions and the body diameter. The “wind
tunnel model with no boundary layer trip” option was chosen for the viscous computations.

The comparisons for normal force coefficient slope at zero angle of attack, axial force
coefficient, and center of pressure are shown in Figures 20A, 20B, and 20C, respectively. For these
cases, range data was available from M,, = 3.5 to 5.3 and CFD computations were done at M_ =4.41,
5.0, and 5.88. AP9S results are shown for M, = 2.0 to 6.0. The large scatter in the range data could
be the result of angle of attack motion that is not accounted for in either AP98 or the CFD runs. It
can be seen that the AP98 results agree reasonably well with the CFD computations and both fall in
the middle of the range data. Figures 20D, 20E, and 20F present comparisons for pitching moment
coefficient slope at zero angle of attack, roll damping coefficient, and pitch damping coefficient,
respectively. The range data is available for the same Mach number range as before, but the CFD
and AP98 results are shown for M,, = 3.0 to 5.5. Once again, the AP98 results are in fairly good
agreement with the CFD computations except for pitching moment where they tend to be somewhat
high. In general, both the AP98 and CFD results tend to be high compared to the range data.

A second set of experimental range data and CFD computations was available from
References 32 and 33 for a similar six-finned projectile. In this instance, the cone-cylinder body is
13.94 calibers in length with a diameter of 35.2 mm. The cone half-angle is 8 deg and the leading
and trailing edges of the fins are blunt. This configuration is shown in Figure 21. The same
computational options were used as in the previous case. Ballistic data was available over a Mach
number range from 3.0 to about 4.5. CFD data was given from M_ = 3.0 to 5.5 and AP98
computations were performed over this same Mach number interval.

Comparisons for normal force coefficient and pitching moment coefficient slopes at zero
angle of attack are shown in Figures 22A and 22B. The AP98 results at lower Mach numbers tend
to be somewhat high compared to the CFD numbers in both cases, and both tend to lie above the
range data. Figure 22C shows the comparison for axial force coefficient. Good agreement is
obtained throughout in this instance. The comparison for pitch damping coefficient is shown in
Figure 22D. Once again, the AP98 numbers are somewhat high relative to the CFD results and both
tend to lie above the majority of the ballistic data.
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A third set of data was available from the guided projectile wind tunnel tests of Reference 34.
The model used is shown in Figure 23. It consists of a circular body, approximately 12.26 calibers
in length, with a 3-caliber Von Karman ogive nose. The body diameter is 2.976 in. Eight small,
high aspect ratio pop-out fins are located at the rear of a short boattail section. The model was also
tested with four pop-out canards, but this configuration was not considered since the desire was to
isolate the effects of the fins. It was necessary to modify the fin geometry to conform to the input
requirements of AP98. The equivalent fin has a trapezoidal planform with the same area, sweep
angle, and aspect ratio as the original. AP98 runs were done at the indicated Reynolds numbers for
each case and the “wind tunnel model with no boundary layer trip” option was used.

Wind tunnel data was available in this case for the body alone, so it was used to adjust for
the effects of crossflow separation and reattachment. This adjustment is made in AP98 by changing
the critical crossflow Reynolds number and by shifting the value of crossflow Mach number at which
the “drag bucket” starts. These two parameters are set to obtain a good fit to the experimental data
at each Mach number and are then used for all further computations. The values that were
determined are as follows:

M =0.40: Critical Reynolds Number = 179000
Crossflow Mach Number Shift = -0.05

M =0.80: Critical Reynolds Number = 285000
Crossflow Mach Number Shift = +0.05

M =0.95: Critical Reynolds Number = 304000
Crossflow Mach Number Shift = +0.09

M =1.05: Ciritical Reynolds Number = 318000
Crossflow Mach Number Shift = +0.12

M =1.10: Critical Reynolds Number = 326000
Crossflow Mach Number Shift = +0.13

M =130 Critical Reynolds Number = 365000
Crossflow Mach Number Shift = +0.15

M=1.60 Critical Reynolds Number = 390000
Crossflow Mach Number Shift = +0.15

M=2.00 Critical Reynolds Number = 390000
Crossflow Mach Number Shift = +0.15
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36.510"

FIGURE 23. SCHEMATIC OF EIGHT-FIN GUIDED PROJECTILE
(FROM REFERENCE 34)

Figures 24A-24H show the final results of this procedure for the body alone normal force. The very
noticeable “kinks” in the curves at the lower Mach numbers are caused by the transition from
subcritical to supercritical flow. It can be seen that these are more noticeable for the AP98
computations than for the wind tunnel data. The most likely cause of this difference lies in the
incomplete modeling of this very complex phenomenon within AP98. While the critical crossflow
Reynolds number and the location of the drag bucket can be varied, the width and shape of the
reduced crossflow drag region cannot be changed in the AP98 model. In actuality, these latter
parameters are likely to be highly dependent on both geometric and aerodynamic flow conditions.

Wind tunnel data was also available for this configuration with only four fins, and the normal
force comparisons with AP98 for this case are shown in Figures 25A-25H. These results are
included to provide information on how well AP98 does on these computations since they are used
as a basis for the eight-fin model. If, for example, the AP98 predictions are low for a given case
here, we would expect them to be low for the corresponding eight-fin case.

The comparisons for total normal force for the full eight-fin configuration are shown in
Figures 26 A—26H for Mach numbers of 0.4, 0.8, 0.95, 1.05, 1.1, 1.3, 1.6, and 2.0, respectively.
Angles of attack range up to 15 deg. In general, the comparisons are quite good. The greatest
disagreement occurs at the lower Mach numbers and higher angles of attack. The body
aerodynamics under these conditions can be very sensitive to the subcritical or supercritical status
of the flow in the leeward region, making accurate predictions difficult. The differences may be
related primarily to this effect rather than to the fin modeling.
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6.0 CONCLUSIONS

A new semiempirical method to compute aerodynamics of multifin missile configurations
has been developed. The new method was developed using full Euler Computational Fluid
Dynamics codes in conjunction with wind tunnel data bases. The Euler calculations were first
compared to cruciform fin-body calculations from the NASA Tri-service data base. After this,
factors for aerodynamics of configurations with six and eight fins were computed based on the
four-fin results. Conclusions from this effort were as follows:

i) Agreement between the NASA Tri-service data base and the CFD computations was
quite good except at subsonic Mach numbers

ii) It was concluded the major reason for the discrepancy at subsonic Mach numbers
between the Euler computations and wind tunnel data was the failure of the Euler
solution to adequately predict the correct flow in the leeward plane caused by viscous
effects.

iii) Full Navier-Stokes solutions, with the appropriate turbulence model, are necessary
for adequate solutions of cruciform missile aerodynamics for subsonic Mach
numbers as angle of attack increases. Comparisons with experiment could be
improved upon at AOAs greater than 30 deg at all Mach numbers.

iv) Without the time or funding to conduct full Navier-Stokes computations, it is
believed the semiempirical model developed with the full Euler solutions in
conjunction with engineering judgement is adequate.

A new aerodynamic smoother to smooth the static acrodynamics where different
theoretical methods are used as a function of Mach number was also developed. It was
concluded this new method worked well and should eliminate confusion on the part of users of
future versions of the APC with respect to fictitious discontinuities in aerodynamics.
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8.0 SYMBOLS AND DEFINITIONS

AOA Angle of Attack
APC Aeroprediction Code
AP98 1998 version of the APC
AR Aspect Ratio = b¥/Ay
CFD Computational Fluid Dynamics
LT Linear Theory
SBT Slender-body Theory
b Wing span (not including body)(ft)
Ca Axial force coefficient
C Ay Axial force coefficient of wing alone
C, Roll damping moment coefficient

P
Cu Pitching moment coefficient (based on reference area and body diameter,

if body present, or mean aerodynamic chord, if wing alone)
Cu +Cy Pitch damping moment coefficient
q @

c Mean aerodynamic chord of wing or tail
Cy Normal force coefficient

Nocw Normal-force coefficient on body in presence of wing

Ny Negative normal-force coefficient component on tail due to wing or

v canard-shed vortex

CNW Normal force coefficient of wing alone
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Nwe)
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Normal-force coefficient of wing in presence of body

Side force coefficient

Body diameter (ft) at base

Freestream Mach number

Local body radius (ft)

Wing or tail semispan plus the body radius in wing-body lift methodology
Freestream velocity

Center of pressure (in feet or calibers from some reference point that can
be specified) in x direction

Angle of attack (deg)
Leading edge sweep angle of wing or tail
Roll position of missile fins (® = 0 deg corresponds to fins in the plus (+)

orientation). ® =45 deg corresponds to fins rolled to the cross (x)
orientation
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